\section*{ The Excellence Key... \\ | CLASS - X (PRE - BOARD) TERM -I |
| :--- |
| (CODE-041)
 Time : 90 MINUTES |
| TMC-TS-AG-TS-10-OBJ-(MCQ)
 Maximum Marks : 40 |}

General Instructions:

1. This question paper contains three sections - A, B and C. Each part is compulsory.
2. Section - A has 20 MCQs, attempt any 16 out of 20 .
3. Section - B has 20 MCQs , attempt any 16 out of 20
4. Section - C has 10 MCQs, attempt any 8 out of 10 .
5. There is no negative marking.
6. All questions carry equal marks.

SECTION - A

In this section, attempt any 16 questions out of Questions $1-20$. Each Question is of 1 mark weightage.
Q. $1 \quad$ The dimensions of the room are $8 \mathrm{~m} 25 \mathrm{~cm}, 6 \mathrm{~m} 75 \mathrm{~cm}$ and 4 m 50 cm . Find the length of largest measuring road which can measure the dimensions of room exactly.
(a) 1 m 25 cm
(b) 75 cm
(c) 90 cm
(d) 1 m 35 cm
Q. $2 \quad$ Solve for x and $\mathrm{y}: 99 \mathrm{x}+101 \mathrm{y}=499,101 \mathrm{x}+99 \mathrm{y}=501$
(a) $x=3, y=1$
(b) $x=3, y=-2$
(c) $x=3, y=2$ (d)NONE
Q. 3 The perpendicular AD on the base BC of a $\triangle \mathrm{ABC}$ meets BC at D so that $\mathrm{DB}=$ $2 C D$. If $3 A B^{2}=K A C^{2}+B C^{2}$,find K
(a) 3 cm
(b) 1 cm
(c) 2 cm
(d) NONE
Q. 4 The area of a right angled triangle is $40 \mathrm{sq} . \mathrm{cm}$ and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) data insufficient
Q. 5 The probability that an leap year has 53 Sunday or Mondays, is
(a) $\frac{2}{7}$ (b) $\frac{1}{7}$ (c) $\frac{3}{7}$ (d) $\frac{4}{7}$
Q. 6 It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ with $\frac{B C}{Q R}=\frac{1}{3}$. Then $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle B C A)}$ is equal to
(a) 9
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$
Q. $7 \quad(1+\tan A \tan B)^{2}+(\tan A-\tan B)^{2}=$
(a) $\operatorname{cosec}^{2} A \cdot \operatorname{cosec}^{2} B$ (b) $\sec ^{2} A \cdot \sec ^{2} B$ (c) $\tan ^{2} A \cdot \tan ^{2} B$ (d) none of these
Q. 8 Preethi picked up $\sqrt{6}$ and her question was- which of the following is not irrational?
(a) $15+3 \sqrt{6}$
(b) $\sqrt{24}-9$
(c) $5 \sqrt{150}$
(d) None of these
Q. 9 The number of solutions of $3^{x+y}=243 \& 243^{x-y}=3$ is
(a) 0 (b) 1 (c) 2 (d) infinite
Q. 10 If two vertices of a parallelogram are $(-3,5)$ and $(-4,7)$ and the diagonals intersect at $(-2,-3)$ then find the other two vertices
a) $(-1,-11) \&(0,-13)$
(b) $(-1,11) \&(0,-13)$
(c) $(-1,-11) \&(0,13)$
(d)none

Q. 11	In the given figure , O is the center of the bigger circle and AC is its diameter. Another circle with AB as diameter is drawn. If $\mathrm{AC}=54 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$, Find the area of the shaded region (A) $770 \mathrm{~cm}^{2}$ (B) $385 \mathrm{~cm}^{2}$ (C) $77 \mathrm{~cm}^{2}$ (D) none
Q. 12	Six bells commence tolling together and toll at intervals of $2,4,6,8,10,12$ minutes respectively. In 30 hours, how many times do they toll together a) 17 b) 15 c) 16 d) NONE
Q. 13	$\cos ^{4} A-\sin ^{4} A$ is equal to (a) $2 \cos ^{2} A+1$ (b) $2 \cos ^{2} A-1$ (c) $2 \sin ^{2} A-1$ (d) $2 \sin ^{2} A+1$
Q. 14	$\cos ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \sec ^{2} 60^{\circ}+\frac{1}{2} \cos ^{2} 90^{\circ}-2 \tan ^{2} 60^{\circ}=?$ (a) $\frac{73}{8}$ (b) $\frac{75}{8}$ (c) $\frac{81}{8}$ (d) $\frac{83}{8}$
Q. 15	In given figureD ${ }_{C}$, find the area of the shaded region, where $A B C D$ is a square of side 7 cm and semicircles are drawn with each side of the square as diameter. (use $\pi=22 / 7$) (A) $21 \mathrm{~cm}^{2}$ (B) $49 \mathrm{~cm}^{2}$ (C) $28 \mathrm{~cm}^{2}$ (D) none
Q. 16	In an equilateral triangle ABC , if $A D \perp B C$, then $\frac{A B^{2}}{A D^{2}}=$ (a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{1}{2}$ (d) $\frac{2}{1}$
Q. 17	In two triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{E}$ and $\angle \mathrm{B}=\angle \mathrm{F}$. Then, $\frac{A B}{A C}$ is equal to a. $\frac{D E}{D F}$ b. $\frac{E D}{E F}$ c. $\frac{E F}{E D}$ d. $\frac{E F}{E D}$
Q. 18	In the adjoining figure, the length of $B C$ is (a) $2 \sqrt{3} \mathrm{~cm}$ (b) $3 \sqrt{3} \mathrm{~cm}$ (c) $4 \sqrt{3} \mathrm{~cm}$ (d) 3 cm
Q. 19	The pairs of linear equations $3 x+4 y+5=0$ and $12 x+16 y+15=0$ have: (a)unique solution (b) many solutions (C) no solution (d) exactly two solutions.
Q. 20	Match option of Column I with the appropriate option of Column II.

	(A) (B) (C) (D) (a) (b) (b) (c) (d)	Column-I Probability of getting number 5 in throwing a dice. Probability of obtaining three heads in a single throw of a coin. Probability of getting the sum of the numbers as 7 , when two dice are thrown Probability of occurrence of two sure independent events. $\begin{aligned} & \mathrm{A})-\mathrm{p},(\mathrm{~B})-(\mathrm{q}, \mathrm{r}),(\mathrm{C}) \\ & \mathrm{A})-(\mathrm{q}, \mathrm{t}),(\mathrm{B})-\mathrm{p},(\mathrm{C}) \\ & \mathrm{A})-(\mathrm{q}, \mathrm{t}),(\mathrm{B})-(\mathrm{r}, \mathrm{~s}),(\mathrm{C} \\ & \mathrm{A})-\mathrm{p},(\mathrm{~B})-(\mathrm{q}, \mathrm{t}),(\mathrm{C}) \end{aligned}$	(p) (q) (r) (s) (t)	Column-II 0 $\frac{6}{36}$ 1 $\left(\frac{1}{2}\right)^{0}$ $\frac{1}{6}$ D) -t t), (D) - (r p, (D) $-r$ s), (D) $-r$	
		section, attempt any weightage.		$\begin{array}{r} \text { SEC } \\ \text { stions ou } \end{array}$	$\mathrm{J}-\mathbf{B}$ he Questions 21-40. Each Question is of 1
Q. 21		$\left(2^{2} \times 5^{7} \times 7^{2}\right)$ is a \qquad erminating on-terminating and		decimal. ricurring	(b) Recuring (d) None of these
Q. 22		equation of a pair of tion can be: $x+14 y+4=0(b)-10 x-14$		pendent $4=0$ © -1	ar equations is $-5 x+7 y=2$, the second $14 y+4=0 \text { (d) } 10 x-14 y=-4$
Q. 23		$\begin{equation*} =3 \sec ^{2} \theta-1, y=\tan \tag{d} \end{equation*}$ (b) 4 (c) 8		2 , then x	y is equal to
Q. 24		$2^{3} \times 3, \quad b=2 \times 3 \times 5,$ (b) 2 (c) 3 (d) 4		$3^{n} \times 5 \text { and }$	$\mathrm{CM}(a, b, c)=2^{3} \times 3^{2} \times 5$, then n is
Q. 25		$A B C, \angle A=x^{0}, \angle B=(3 x)^{0}$ ute angled (b) obtu		$\begin{aligned} & \angle C=y^{\circ} \\ & \text { gled (c) } \end{aligned}$	$-5 x=30$, then the triangle is angled (d) equilateral
Q. 26	Fro pro 11, (a)	a book containing 1 ability that the sum of (b) $\frac{9}{100}$ (c) $\frac{11}{100}$ (d)	00	pages, on digits of one of th	ge is selected randomly. The page number of the selected page is
Q. 27	The (a) (c)	value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is $\cot \theta-\cos e c \theta$ $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta$ (d)		(b) $\cos e c$ $t \theta+\cos e$	$\cot \theta$
Q. 28		buys 4 cartons of juice. A customer con . The probability t tetrapacks of juice,		juice, 3 s to vish he custo	3 cartons of shop and picks a tetrapack of juice at picks a guava juice, if each carton

	$\begin{array}{llll}\text { (a) } \frac{1}{10} & \text { (b) } \frac{2}{10} & \text { (c) } \frac{3}{10} & \text { (d) } \frac{2}{5}\end{array}$
Q. 29	Distance of point $P(3,4)$ from x-axis is (a) 3 units (b) 4 units (c) 5 units (d) 1 units
Q. 30	$\Delta \mathrm{ABC}$ is an equilateral triangle with each side of length 2 p . If $\mathrm{AD} \perp \mathrm{BC}$ then the value of $A D$ is (a) $\sqrt{3}$ (b) $\sqrt{3} p$ (c) $2 p$ (d) $4 p$
Q. 31	The point $(2, y)$ divide the line segment joining the points $\mathrm{A}(-2,2)$ and $\mathrm{B}(3,7)$ the value of y. (a) $6(\mathrm{~b})-6$ (c) (c) 4 (d) NONE
Q. 32	$\sqrt{\frac{\sec A+\tan A}{\sec A-\tan A}}+\sqrt{\frac{\sec A-\tan A}{\sec A+\tan A}}=$ (a) $\sec A$ (b) $2 \operatorname{cosec} A$ (c) $2 \sec A$ (d) none
Q. 33	If a and b are two positive integers such that the least prime factor of a is 3 and the least prime factor of b is 5 . Then, the least prime factor of $(a+b)$ is (a) 2 (b) 3 (c) 5 (d) 8
Q. 34	Find the area of the adjoining diagram (a) $224 m^{2}$ (b) $154 \mathrm{~m}^{2}$ (c) $378 \mathrm{~m}^{2}$ (d) none
Q. 35	The coordinates of a point A on y-axis, at a distance of 4 units from x-axis and below it are (a) $(4,0)$ (b) $(0,4)$ (c) $(-4,0)$ (d) $(0,-4)$
Q. 36	In the fig., PSR R, TQ and PAQ are three semi-circles of diameters $10 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm region respectively. Find the perimeter of shaded region. (Use $\pi=$ 22/7) (a) 31.4 cm (b) 3.14 cm (c) 15.7 cm (d) none
Q. 37	Find the area of the shaded region, if the diameter of the circle with center O is 28 cm and $\mathrm{AQ}=1 / 4 \mathrm{AB}$. (use $\pi=22 / 7$) (A) $192.5 \mathrm{~cm}^{2}$ (B) (B) $385 \mathrm{~cm}^{2}$ (C) $490 \mathrm{~cm}^{2}$ (D) none

Q.38	If $4 x^{4}-3 x^{3}-3 x^{2}+x-7$ is divided by $1-2 x$ then remainder will be
(A) $\frac{57}{8}(\mathrm{~B})-\frac{59}{8}(\mathrm{C}) \frac{55}{8}$ (D) $-\frac{55}{8}$	
Q.39	

	the type of the polynomial it traces.
Q. 42	The Roller Coasters are represented by the following graphs $y=p(x)$. Which Roller Coaster has more than three distinct zeroes?
Q. 43	If the Roller Coaster is represented by the cubic polynomial $t(x)=$ $\mathrm{px} 3+\mathrm{qx} 2+\mathrm{rx}+\mathrm{s}$,then which of the following is always true (a) $\mathrm{s} \neq 0$ (b) $r \neq 0$ (c) $q \neq 0$ (d) $p \neq 0$
Q. 44	 If the path traced by the Roller Coaster is represented by the above graph $\mathrm{y}=\mathrm{p}(\mathrm{x})$, find the number of zeroes? (a) 0 (b) 1 (c) 2 (d) 3

| Q.45 |
| :--- | :--- | :--- |

Dr. Agyat Gupta

